Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 12(1): 12709, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1960500

ABSTRACT

The Arabsphere struggles with highly complicated water challenges due to climate change, desertification, coronavirus pandemic, and Russo-Ukrainian War. This paper explores how to build a robust water vision to pave the road to achieving sustainable development goals (SDGs) in the Arabsphere. A sustainable water future (SWF) necessitates an interdisciplinary and transdisciplinary research strategy. 'Horizon scanning' process (HSP) is one of the promising foresight methodologies. A generic process for "Horizon scanning" has been developed to cope with water crises and challenges. "DEEPEST" holistic framework has been designed to suit both the "Futurology" science and water, environment, and engineering disciplines. "DEEPEST" characterizes Demographics, Ecological, Environmental, Political, Economic, Social, and Technological features. The macro-future factors (MFF) applied in the foresight process (FP) have been presented. The results showed that Water conservation (WC), Circular Water (CW), and Emerging Water Technologies (EWTs) were the main outcomes of the 'Horizon scanning' process (HSP). The paper concluded that the preparing for a sustainable water future (SWF) must be right now and the opportunities range from the deepest water drop to the highest water drop on Earth. The essence of the conclusion is hydrosphere sustainability, particularly in Arabsphere, should be given extreme concentration, effort, and support.


Subject(s)
Conservation of Natural Resources , Conservation of Water Resources , Climate Change , Conservation of Natural Resources/methods , Sustainable Development , Water
2.
Environ Sci Pollut Res Int ; 29(5): 6591-6611, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1375674

ABSTRACT

Humanity could face the COVID-19 epidemic to crystallize a sustainable future for the water, hygiene, and food sectors. The epidemic has affected the sustainability of water, food, and health institutions in Egypt. Water consumption levels have increased in the agricultural sector to ensure food security. Regular handwashing is one of the most important measures to prevent the epidemic, and this has an impact on water consumption. The purpose of the research is to reshape sustainable development trajectory due to COVID-19 pandemic in Egypt through three interdependent phases: the first is devoted to forecast how the pandemic could be spreading in Egypt, the second is assigned to foresee implications and consequences of the pandemic on water, food, and human activities, and the third is dedicated to exploring how Egypt could utilize non-conventional water resources as a precious resource to fight the pandemic and explore sustainable recovery strategies. The results could be summarized as the diffusion of COVID-19 pandemic may be considered a group of evolutionary processes. The vision of growth to a limit may be applied; the number of cases of COVID-19 grows rapidly, but the growth will be reduced due to negative feedback signals from the environment. The paper concludes that the COVID-19 epidemic could be addressed by enhancing the water sector to better cope with future shocks. Water, food, health, and work opportunities could be provided and managed sustainably. The need to provide water to wash the hands of all citizens has been emphasized to fight the coronavirus. Non-conventional water resources could be an engine to ambitious plans to drive economic growth through megaprojects. Egypt would enable transforming this crisis into an opportunity to accelerate the pace of action towards achieving Sustainable Development Goals.


Subject(s)
COVID-19 , Pandemics , Humans , SARS-CoV-2 , Sustainable Development , Water Resources
SELECTION OF CITATIONS
SEARCH DETAIL